Stratospheric variability and tropospheric ozone

نویسندگان

  • Juno Hsu
  • Michael J. Prather
چکیده

[1] Changes in the stratosphere-troposphere exchange (STE) of ozone over the last few decades have altered the tropospheric ozone abundance and are likely to continue doing so in the coming century as climate changes. Combining an updated linearized stratospheric ozone chemistry (Linoz v2) with parameterized polar stratospheric clouds (PSCs) chemistry, a 5-year (2001–2005) sequence of the European Centre for Medium-Range Weather Forecasts (ECMWF) meteorology data, and the University of California, Irvine (UCI) chemistry transport model (CTM), we examined variations in STE O3 flux and how it perturbs tropospheric O3. Our estimate for the current STE ozone flux is 290 Tg/a in the Northern Hemisphere (NH) and 225 Tg/a in the Southern Hemisphere (SH). The 2001–2005 interannual root-mean-square (RMS) variability is 25 Tg/a for the NH and 30 Tg/a for the SH. STE drives a seasonal peak-to-peak NH variability in tropospheric ozone of about 7–8 Dobson unit (DU). Of the interannual STE variance, 20% and 45% can be explained by the quasi-biennial oscillation (QBO) in the NH and SH, respectively. The CTM matches the observed QBO variations in total column ozone, and the STE O3 flux shows negative anomalies over the midlatitudes during the easterly phases of the QBO. When the observed column ozone depletion from 1979 to 2004 is modeled with Linoz v2, we predicted STE reductions of at most 10% in the NH, corresponding to a mean decrease of 1 ppb in tropospheric O3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropospheric ozone variations governed by changes in stratospheric circulation

Thedownward transport of stratospheric ozone is an important natural source of tropospheric ozone, particularly in the upper troposphere, where changes in ozone have their largest radiative e ect1. Stratospheric circulation is projected to intensify over the coming century, which could lead to an increase in the flux of ozone from the stratosphere to the troposphere2–4. However, large uncertain...

متن کامل

Contribution of stratospheric ozone to the interannual variability of tropospheric ozone in the northern extratropics

[1] We examined the role of variability in the input of stratospheric ozone on the interannual variability of tropospheric ozone in the northern extratropics using correlations of monthly ozone anomalies for the lower stratosphere and the troposphere. We used output from a multiyear simulation of the NASA Goddard Space Flight Center (GSFC) Chemistry and Transport Model (CTM), and evaluated mode...

متن کامل

Impact of climate variability on tropospheric ozone.

A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external...

متن کامل

Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability

Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations o...

متن کامل

Stratospheric versus pollution influences on ozone at Bermuda: Reconciling past analyses

[1] Conflicting interpretations of the spring ozone maximum observed at Bermuda (32 N, 65 W) have fueled the debate on stratospheric influence versus tropospheric production as sources of tropospheric ozone. We use a global three-dimensional (3-D) model of tropospheric ozone-NOx-hydrocarbon chemistry driven by assimilated meteorological observations to reconcile these past interpretations. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009